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On an example of a simple spin system with two ground states and no sym- 
metry, we show how to control low-temperature systems near first-order phase 
transitions by a straightforward renormalization group argument. The method, 
as opposed to the Pirogov-Sinai approach, also works for complex 
Hamiltonians. 
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1. I N T R O D U C T I O N  

The renormalization group (~2) has been devised to study phenomena with 
no underlying short length scale, such as second-order phase transitions 
and the behavior near them, or the related short-distance properties of the 
quantum field theory. In both problems the scale is set by the correlation 
length, which is large in dimensionless units (the units of ultraviolet cutoff). 
The renormalization group replaces such a problem by a sequence of 
problems with short-range scales introduced by hand. 

As opposed to the case of the second-order phase transitions, around 
the first-order transition the correlation length stays finite and short for 
low temperature and there seems to be no a priori  reason for the multiscale 
analysis. There is, however, a second length scale present in the problem: 
the size of the critical droplet in the false vacuum. 4 To understand this, 
within an equilibrium setup, let us look at the low-temperature Ising model 
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in dimension d>~ 2 with a small, positive magnetic field. Consider the ( - ) -  
boundary condition for a finite box A. If the box is big, then the typical 
configuration will have a big contour near ~A, which flips the boundary 
conditions, and a few small contours inside the (+)-sea surrounded by it. 
If the box is smaller, then the typical configuration will just have a few 
small contours in the negative sea (see Fig. 1). 

The size L of the borderline box is roughly given by equating the 
energy of the additional contour near OA with the gain of the energy by 
flipping the inside of A from the minus to plus sign: 

2 d ~ L  d -  1 ~ 2 h L  d 

Thus, 

L = 

so that it diverges at the transition point. L sets a scale independent of the 
correlation length ~, which is 0(/3 -~) and stays finite at h = 0. 

It is natural to use a multiscale analysis to deal with a diverging scale. 
The heuristic renormalization-group treatment of the first-order phase 
transitions may be found in Refs. 7 and 2. It put stress on the presence of 
operators scaling like volume at the transition point. Our rigorous 
approach, not totally unrelated in spirit, proceeds as follows. If both ~ and 
L are small, we shall deal with the system by a single-scale low-temperature 
expansion. If ~ is small but L is not, however, we shall perform a coarse- 
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graining transformation, which lowers ~ and L and iterate it until L gets 
small enough for the single-scale expansion to converge. 

The choice of the coarse-graining procedure in low temperature is 
somewhat subtle, since we want to be able to iterate the procedure easily 
and to avoid the pathologies of the type described in Ref. 3. This is done by 
working directly with the lowest lying excitations of the system: the Peierls 
contours. We reformulate our model as a "contour model with external 
field." The coarse graining consists in a resummation of the smallest 
contours, which is controlled in the thermodynamic limit by a convergent 
expansion, and of a blocking of the remaining ones. The application of the 
procedure leaves us in the class of contour models with external field, but 
modifies the value of the external field by addition of the (tiny) free energy 
density of small contours and by multiplication of the resulting value by 
the volume rescaling factor (the volume of the block). Thus, the external 
field expands under the coarse graining, providing a relevant variable in the 
renormalization group language. ~7'2/ This growth beats the growth of the 
effective (inverse) temperature fl, so that L decreases. The initial value of 
the field at the transition point where L = oo will be identified using the 
standard trick for the control of relevant variables due to Bleher and 
Sinai. ~I) At this point, the coarse graining will be iterated an infinite 
number of times, driving the system to the low-temperature fixed point, ~6) 
and the inductive multiscale expansion will establish the coexistence of 
different phases. 

As compared with the existing rigorous theory of the first-order phase 
transitions due to Pirogov and Sinai, ~9'11) our approach covers an impor- 
tant case beyond the scope of that theory: the case of complex 
Hamiltonians. Here the original version of the Pirogov-Sinai approach 
worked only at the transition point, but not in its neighborhood. (8~ 
Statistical mechanical systems with complex Hamiltonians appear naturally 
in the study of metastability or in lattice gauge theories in the presence of 
the so-called 0 topological terms, so that it is important to have an 
approach that makes it possible to treat first-order phase transitions in 
both cases. 

This paper is organized as follows. In Section 2, starting with a simple 
Ising-type system in a magnetic field, we introduce the formalism of 
contour models with an external field. In Section 3, we treat such a contour 
model by a single-scale expansion in the case of low temperature and high 
external field (when both length scales discussed above are short). Section 4 
is devoted to the treatment of the gas of small contours, a preparatory step 
to Section 5, describing the coarse-graining procedure for the contour 
models. Finally, in Section 6 the control of the low-temperature, small-field 
model is achieved by iterative application of the coarse-graining procedure, 
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and Section 7 establishes the finiteness of the correlation length throughout 
the transition region. 

In the present paper, for simplicity, we have dealt with systems with 
only two ground states. It should be clear that the approach may be 
generalized to the case with many ground states, leading to the extension of 
the Gibbs phase rule to systems with complex Hamiltonians. We shall leave 
this to a future publication. 

When this paper was essentially completed, we learnt that another 
contour model approach to systems with first-order transitions ~13) may be 
extended to the case of complex Hamiltonians. This approach, although 
working with single-scale contours, contains ideas also used in our analysis. 

2. F R O M  SP IN  M O D E L  TO C O N T O U R  M O D E L  

Instead of considering the most general spin or field theory system to 
which our approach applies, let us start with a simple example of the Ising- 
type system on the hypercubic lattice 71 d, d~> 2, with the Hamiltonian 

/ ~ O ( o )  = l f l  E ( a x  - ay )  2 - 2 J x ( T X  (1 )  
{x,y} x 

lx- -y l  ~ I diana X< R 

where ax=Iqx~xax  and Jx are translationally invariant. We take /~ and 
Jx complex with Jx bounded for X #  {x} and Re/~ -/~0 large, so that our 
model will have two approximate ground states with the energies shifted 
with respect to each other by means of Re J{x}. 

In order to get rid of the infinite sums in (1), consider a finite volume 
A given by the l u • . . .  X l u closed cube in ~d centered at the origin, where 
1 is an odd integer. Introduce the finite-volume Hamittonian H A ( a  ) by 
restricting in (1) the sums to lattice subsets intersecting A. For {XJ} c A, 
define the finite-volume correlation functions with (+) -  or ( - ) -boundary  
condition as 

a x j  = e flHA(~ 

1 A ~rx= • j ~  1 Icr,~= +_1 
x E A  x ~ A  

(2) 

with values of a outside A fixed to plus or minus, respectively. Of course, 
(2) makes sense only if the denominator does not vanish, which will be 
shown later in the regime of interest, where we shall also control the 
thermodynamic limit A s Nd of (2). 

It will be convenient to rewrite the statistical sums of (2) in terms of 
sums over contours involving the lattice sites where the spin configuration 
changes values. Given {xj} and a configuration a equal to + 1 ( - 1 )  out- 
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side A, call a site x e A n 2  d a contour site if (i) there exists y eZ d, 
Ix-y] <R, such that ay#ax, or (ii) x is in a closed L x  -.. x L  block cen- 
tered at a point of L7/a (an "L-block") containing points x~ or in an 
L-block intersecting the latter ones ( L - - P >  R will be chosen later in a 
fi-dependent way and will be only loosely related to the scale discussed in 
the introduction). 

A connected component 7 of the union of the closed sites will be called 
a contour. A boundary cell of a contour will be assigned the sign of the spin 
at the center of the exterior unit cube adjacent to it. Each component of 07 
obtains a sign in this way. We shall call 7 with the signs of components of 
(?7 specified a signed contour (with some abuse, also denoted by 7). A signed 
contour 7 will be called positive or negative according to the sign of the 
exteriormost component of 07 (see Fig. 2). Note that whether a contour 7 
with (?7 c~ (?A r ~ is positive or negative is determined by the boundary 
condition. We shall denote by V(7 ) the set surrounded by the exteriormost 
component of (?7. The interior of 7, I n t ? =  V(7)\7, splits into In t •  
according to the signs of the surrounding components of (77 (Fig. 2). 

Now, given a signed contour 7 and a set of sites {yx} c 7, let 

P{yk}(Y)=~[IaykeXp{--�89 Z (O'x - -  O-Y )2 
k {x,y} 

xory in7  

Z ~ Jx~X/lXv~A[t (3) + 
) 

diam X < R 

!{ 

! 
§ 
4- 

Figure 2 

�9 f § 2 4 7  
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be the activity of y. The first sum in (3) runs over all the configurations a 
for which y is the unique signed contour. We shall also denote 

P~(7) =0(7) (4) 

Notice that P{Yk}(Y) depends on A only if dist(y, 0A)=0.  
Given a boundary condition, call a family ~ = {7} of signed contours 

in A compatible if they are disconnected, if the signs on the components of 
their boundaries that can be connected outside 0 Y agree, and if the signs 
of the exteriormost contours agree with the sign of the boundary condition. 
For a compatible family c3, let V+(~?)w V - ( 0 ) =  A \ ( J ~  y with the decom- 
position into V-+(~) according to the signs on the boundary. Every 
configuration producing cr is equal + 1 ( - 1 )  on V+(~3) [V-(~?)] (and on 
its R-neighborhood in A). Thus, each point ue  V+-(O) contributes the 
energy 

h + = ~ (q-l)  Ixl Jx/IX~AI (5) 
X ~ u  

d i a m  X < R 

For dist(u, 0A)/> R, h~ = const = h-+. 
The above definitions yield naturally the following expression for the 

correlation functions: 

[ ~ e x p (  ~+ ~ h ~ ) I ]  P{xj}~-y(7)] 
c o m p a t i b l e  ~3 s _ u e  VS(O) y ~ O  

U y= {xj},~o 

x ~ exp ~ h; 1-I P(7) 
c o m p a t i b l e c 3  s _ u ~  V S ( a )  7 e ~ ?  

- -  § + = ( { xj } ) / z x  (6) 

This is the contour model expression with which we shall work. It is a 
useful representation at low temperatures, where contours are strongly 
suppressed. 

We shall need estimates on the contour activities expressing this sup- 
pression. For (Yk} c A call the excluded volume E({yk}) the union of the 
L-blocks in A containing points Yk and of the L-blocks in A intersecting 
the latter. Suppose that ]Jxb <~O(1) for IYl >~2, Re/3-/~o>> 1, and that 
_+Re(h + - h - ) -  __2 Reh>~0. Then, as is easy to see, 

[p{y~}(7)exp(- ~ h +) <<.Al{yk}lexp[--2tl~oly\E({yk})[] (7) 
u E  7 

for some r/> 0 and A = O(1) (IX[ will denote the number of points for dis- 
crete sets X =  Nd and the volume for nondiscrete ones). 
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3. LARGE EXTERNAL FIELD EXPANSION 

Suppose that 

+ R e h  = _ +ho>~D (8) 

for D big enough. To be definite, fix the upper sign in (8). Now not only 
the contours but also the ( - )  islands are strongly suppressed and we may 
treat our system by a single-scale, low-temperature expansion. To this end, 
divide the set (UT~o7)u v-(c~) into connected components (call them 
polymers X~). For {Yk} c X~ define the polymer activities 

p ~, ,~} (X~)  : e x p  - - .  ~ a \ s =  + .~  v.(a) ~ x~ 

x 17I Pr (9) 
yES 

where 0 runs through the compatible families of contours 7 in X~ such that 
~X~ coincides exactly with the union of positive components of #7 [-while 
O(x~u 7) consists of the negative ones] (see Fig. 3). We have 

% = Y. HP~,,~ + ~,,.(x~) ?. [ I p + ( x ~ )  (lo) 

disjoint disjoint 
U X~= {xj} 

.-I- 
+ 

+ 

4- 
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Notice that for/30 and D large enough, 

Ip~yk}(X~)[ ~<A L{yk}I exp[-max(t//3o, D)]X~\E({yk})I] (11) 

so that the polymer activities are strongly suppressed. 
The control of (10) is standard (see, e.g., Refs. 10 and 5). We obtain 

A {X~} disjoint a 

U X~= {xj} 

x ~ ~ a U X~,Ym p+(Ym) (12) 
n = 0  (YI,...,Yn) m = l  

where, for a collection of sets {Z6}, 

a({Z6} ) = ~  (-- 1) IGI (13) 
G 

with G running through the connected graphs on the vertices Z6 with lines 
between intersecting sets. Now, it is straightforward to establish the con- 
vergence of (12) uniform in the thermodynamic limit and the convergent 
expansion for A = ~d, which is (12) with X~ and Ym running through the 
(bounded) polymers in R d [notice that p~-yk}(X~) stabilize when A ,~ ~d]. 
This establishes the existence of the ( + ) phase for/3 o and D large enough 
and ho ~> D. In the same way for - h 0  ~>D, we establish the existence of the 
( - ) phase. 

The argument that would show in the real case that the wrong t-T-) 
boundary conditions lead to the same infinite-volume limit, since in a big, 
finite volume there would be a contour around c~A flipping the sign (see 
our discussion of the length scale L in the introduction), does not extend to 
the complex case, since it requires lower bounds on sums of activities. 
What happens with the wrong boundary condition will not be decided 
here. 

Instead, let us decide which is the right boundary condition for 
[hol < D. The argument proceeds by induction. The coarse graining, which 
resums small contours and blocks the big ones, produces an effective 
contour model on a longer scale with increased/3o and expanded ho. This 
process will be continued until _+h o becomes bigger than D, so that we 
may apply the expansion of the present section, or until the effective 
volume becomes small. This way, we shall be able to pick, for the given 
imaginary part of h (or of J(x}), the real part ho,. such that for ho ~ ho,., the 
_+ phase exists, and for ho = hoc both phases coexist. 

Let us start with the treatment of small contours. 
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4. S M A L L  C O N T O U R S  IN EXTERNAL FIELD 

Let us assume that Ih01 < 2 D  [for the control of the inductive 
procedure, it is convenient to consider here the whole interval ( - 2 D ,  2D) 
of h0, although for ]h0] > D the existence of the corresponding phase was 
already settled above].  First, we shall rewrite the estimate (7) in a way 
more convenient for subsequent use: 

positive ; (14) 
~<A I{yk}k exp[-t l /~o 17\E({Yk})I] for 7 (negat ive)  

for/~o > flo(tl, D). The condition (14) holds uniformly in A. Moreover, 

P { y k } ( 7 ) e x p ( - ~  h, +)  ~A--P{yk)(7)exp(--~ h+) ~ 

~< 2 exp [ -- e/~o dist(7, c~A) ] A I{yk}l exp [ - r//~ o ]y\E( { Yk } )1 ] 

~positive ~ 
for Y (negat ive)  (15) 

as P{yk}(7) depends on A only if dist(y, ~A)=0 .  
Since pairs of bounds like (14) and (15) will play an important role in 

the sequel, below, by stating that a bound 

If(R)[ ~<P (16) 

for R = A holds uniformly in A, we shall also mean that 

[ f (R)  p~ - f (R)  ~d[ ~< 2{exp[ -e/~o dist(R, 0A)] } P (17) 

for some small e > 0 (say, e = U100). 
Let us divide the set of all (signed) contours into the sets of small and 

big ones. A contour will be called small if I V(7)] < L d, where L = ln~ ~o/D 
will be chosen so that the suppression of small-contour activities overcomes 
the external field contributions from the interior of the contours; see below. 
Big contours are the ones with V(7)>~ L d. For any finite union of unit 
lattice cubes V c  A such that if a small contour 7 lies in V, then so does its 
interior, define 

u~ V compat ible  ~ s _ u ~  VS(~)  y 6 O  
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where ~ runs through the collection of compatible small contours in V and 

v + (4) u v -  (4) = v U /  

Introducing 

E L 1 ~positive~ ~5(7)=P(y)exp - h + -  ~ (h + - h  i )  for 7(negative)  
u ~ I n t  T y 

(19) 

we may rewrite the partition function 2 + of small contours in a simpler 
form as 

2 +  = ~ I ]  P(7) (20) 
c o m p a t i b l e  ~ y E ~" 

There is a standard trick to get rid of the compatibility condition in (20), 
which is the basis of the Pirogov Sinai approach/9/Namely, we modify the 
activities further, defining 

z(7) = ~  -+ ~ positive ~ (21) 
P(?) Z~t~7 for 7 (negative) 

Then 

2+  = Y'. l-[ z(7) (22) 

7 d is jo in t  ~ positi.ve "~ t nega t i ve  J in V 

Thus, 2~  becomes the standard polymer partition function. 
We shall need estimates on the polymer activities z(7). First notice 

that for small contours y, lint 71 ~< O(L) I~1, and consequently 

IRe(h~-h~)l~4Dllnt?[~O(L)DlTl<~�88 (23) 
u ~ I n t ~  

if/~o > rio(t/, D) and L ~< r/rio/O(1) D, so that [see (14), (15)] 

Ip(7)l -G< e - 3"~~ (24) 

uniformly in A. Using this estimate, we shall show that 

]z(7)l -G < exp( -- 2q fl0 171) (25) 
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uniformly in A, so that the polymer (=contour)  activities in (22) are 
strongly suppressed. Following Ref. 4, we shall establish (25) by induction 
in tV(7)I. Supposing (25) to be valid for every 7 such that ]V(7)] ~<k, we 
may use the usual manipulations similar to those leading to (12) in order 
to exponentiate (22) (see, e.g., Ref. 10 or Ref. 5) for any V with IV[ <~k: 

_ _  

The customary expression for ~+(C) is 

1_ 
~-+(C)= ~ n[ • a({?l ..... ?~}) f i  zO';) (27) 

n = 1 (Y t , , . , ,Yn)  i = i 

( positive 
Yl k negative 

U T i = C  

with a(.) given by (13). The inequality (25) results in an estimate on the 
terms ~-+(C) contributing to (26): 

I~:(C)l ~ e -"&loll2 (28) 

uniformly in A. Let us only notice that both Z+ with [ V[ ~< k as well as 
~• with C c  V depend only on contours ? for which IV(?)[ ~<k, and 
thus, to prove (26) and (28), one may rely on (25) valid by the inductive 
hypothesis. From (26) and (28) it follows that 

[2~]~<exp[ Z Z I~• ' - ~r/fl0) ] (29) 
L U ~  V u ~ C ~  V 

for [VI ~< k and similarly 

IZ+[ ~> exp[ - [VI exp(-�89 (30) 

For a small contour y with [V(7)[ 4 k +  1 one necessarily has lint 71 ~<k, 
and thus, in virtue of (21), (24), (29), and (30), 

t z(?)[ ~< exp [ - ~t/fi o [7[ + 2 lint 7[ exp( - �89 ] (31 ) 

As for small contours lint ~] <<. O(L) ]71, the estimate (25) follows. The 
"uniformity" in A of (25) follows the same way. 

Let us rewrite (26) somewhat, introducing ~ ( C ) -  ~+-(C) IVc~ C[/[C] 
for C, V c A ,  C ~  V~(25: 

C A A ~ C ~  V 

= e x p (  ~, S + )  ~ 1-I { e x p [ - ~ ( C ~ ) ] -  1} (32) 
\ u e  v { G }  

A ~ C~ vk V 
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where 

s~= ~ ~• 
C ~ u  
e t A  

(33) 

The inequality (28) implies that 

IS+ [ ~< e ~/~o,'3 

uniformly in A. In the A ,7 R a limit 

(34) 

su ~ s •  ~ ~+-(c)/ICI ['a=~. (35) 
C ~ u  

We may interpret S + as the pressure of the gas of small contours. Notice 
that S + + h + -r S + h -  in general: the pressure depends on the boundary 
condition because large contours close to 0V flipping the boundary 
conditions are not allowed. 

5. C O A R S E  G R A I N I N G  OF THE C O N T O U R S  

Consider the numerator Zd({xj}) of (6) (the denominator Z )  is the 
same expression with {xj} - ~ ) .  Given c~ = {7}, split it into Jw ~, where J 
is the set of all big contours [with IV(7)[ ~> Ld; notice that the contours 
containing points {xj} are big by construction]. ~ is composed of small 
contours ~ and if 7 c V+(j), then also V(7)c V(J) (small contours cannot 
surround big ones). Resumming over ~, we obtain 

) - + -  
compatible a s _ u a VS(a)  

• ~ P{~A~,(Y) (36) 
y e a  

Expressing the small-contour partition functions in (36) according to (32), 
we obtain 

ZJ ({x j} )=  ~ e x p [ ~  ~ (h~+S~)]l-Ip{xp~,7(7) 
comp. ~ u ~ VS(~)  ~ ~ c 5 

x ~ I~ {exp[-~++(a)(C~)] - 1  } 
{c~),c~ ~- v+(a) :~ 

x Z [ I  {exp[--av-<a)(Ca)] - 1} 
{c~},ct~ e v - ( e )  /~ 

(37) 
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Consider the set 

and its connected components F 0. Thus, the F~ are obtained by decorating 
big contours ? e c~ by clusters C~ and Cr The components of 3F~ inherit 
signs from the configuration J, so that F~ form naturally signed contours 
and A = { F~ } a compatible family of signed contours. Let us define for 
{ Yk } ~= i c F the activity of F as 

~ ~ exp I ~  ~ (h~,+S~)] 
c~ {C~} {Cl~ } L s  uc V ' ( ~ ) ~ F  J 

x H p{.~} ~ (? ' ) [ l  { e x p [ - ~ + ( j ) ( c , ) ] -  1} 

x l~ {exp[ - ~ v  (~)(CB)] - 1 } (38) 
P 

where ~ runs through the compatible families of big contours (compatible 
also with the signs on ~?F) such that U ~ ? D { y ~ } ,  C, a V+([)#~, 
C~ e V+(d), C~ca V - ( 0 ) # ~ ,  C~ e V-(J), and 

Let us estimate R{ykI(F ). We have 

Rb.~l(F)exp[- ~(h:+S:)] 

~< ~ exp[  ~ (h~, +S~,-h:-S:) 1 
~, { C~ },{ C/~ } ue  VT(J) c~ F 

x I~ [2 exp(-�89 o IC~I)] [I r2 exp(-�89 IC~l)] 
p 

~" positive ~ 
for (negative) F (39) 

In the estimation of the right-hand side of (39), the sum over c7 may be 
replaced by 

0(1 )lr\e({ykbl 
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since only the part of UT~a? outside E({yk}) as well as the signs in 
/ ~ ( U ~ J T )  have to be chosen to determine ~. Similarly, the sum over {C~} 
and {Cn} may be replaced by the coefficient 

21v(a)~vl 1- [ O(1)IGI 1~ I O(1) Icr 

since choosing a point of V(J)n Finside each C~ and Ce, we may estimate 

~ 2-'v(J)~v'[Io(1) IC~bl-Io(1)-Ici~l 
{G} {cid ~ /~ 

~< y" 2 - i v(a/<, rt 
X c  v ( J ) ~  F 

.  2;c x 4 1  (40) 

The first factor on the right-hand side of (39) is bounded by 

exp[(4D + 2e -'&/3) I V+(8) c~ FI ] ~< H eSDtC~t I~ eS~ 

Moreover, by (14) and (34), 

P{yk}<~(7)exp[- ~ (h+ +S+) 1 
<~ {A exp[(3L)d exp(--�89 }l{y~}~t 

x exp[ -�89 ]7\E({Yk })1 ] exp[4D ]E({yk})m 71 ] (41) 

The last factor in (41) appears only for ? of opposite exterior sign to that of 
F. It can be bounded by expEO(LaD)I{yk}c~TI], leading to a drastic 
increase of A. If, however, all {Yk} are in a single (or in, say, two) L-blocks 
so that the excluded volume is small, then, for L ~  r/flo/O(1)D, 

exp[4D[E({Yk})c~Y[]<~exp[s ~t/flo [?\E({Yk})[ J 

negative "~ 
7 t positive ) 

(42) 

since each ~ negative'~ ~" positive t positive )]) has to be surrounded by a (negative} one occurring 
in {. 
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Gathering all factors together and estimating similarly the difference 
between the finite- and infinite-volume expressions, we obtain the bound 

R{y~}(F)exp I -~ (h.+ + S~+) ] 

~<A 'l(ykIl exp[--�89 [ /~E({yk})l]  
positive 

for (negative) F (43) 

uniformly in A, with 

A' = A exp [(3L) d exp( - �89 exp[O(LdD)] 

with the last factor absent if all {yk} are in one or two L-blocks. 
It is easy to see that (37) may be rewritten as 

(44) 

Z~({xj})  = ~ e x p I _ ~  + ~ ( h s + S ~ ) ] I - ~ R { x l } ~ c ( F ) ( 4 5 )  
compatible A s _ u ~ V S ( A )  F ~ A  

so that the resummation of small contours gives for the correlation 
functions an expression analogous to (6), but with big contours only. The 
point is that big contours represent nonlocal contributions to the interac- 
tion (the local ones are contained in the external field), In the renor- 
realization group language they correspond to irrelevant operators which 
contract under coarse graining. 

We shall use the most straightforward coarse graining procedure 
possible. Given a compatible family of contours A in (45), consider the 
union G of the 5~-blocks, ~ = lm~ L, which intersect U r ~  F and of the 
L '~-blocks  containing the points {xj} or intersecting the latter ones. The 
condition L'>~ L will serve to define small and big contours on the next 
scale, and we shall choose it later. The connected components of G have 
the form ~y',  where 7' is a connected set c A' =- Y - ~ A  built of the closed 
unit lattice cubes and U-blocks containing the points x~--=-5r The 
components of 0G and hence also those of @' inherit signs from those of 
the family 3. The c~'= {y'} becomes a compatible family of contours in A'. 
Define the coarse-grained activities by 

R (x~} ~ r( F) (46) 
3 L s .  usVS(A)n . .qP? ,"  J f e 3  

where we sum over the collections A of signed contours F in Y? '  com- 
patible mutually and with the signs on ~07' .  The further constraint is that 
Lfy' has to be the union of the 5~-blocks intersecting Urea  F not disjoint 
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with 5o7 ' and of the L'2"-blocks in A containing the xj or intersecting the 
latter ones not disjoint with 2"7'. Let also for u e A' 

h ~ ' -  ~, (hf  + S f  ) (47) 
y in the  f - b l o c k  

c e n t e r e d  a t  C~'u 

0" + We may rewrite (45) and consequently ( H ;  ~)~7 on the next scale as 

Z exp ~ h~' p/xj~v,(7' ) 
c o m p a t i b l e  0'  s ~  _ .v~ VS(0 ') y' ' 

x exp ~ h2 [I P'(7') (48) 
c o m p a t i b l e  O" u �9 VS(c ~') y" e O' 

Let us see what we have gained by application of the coarse-graining 
procedure. 

We shall start by estimation of P)(7 ' )  - P'(7') as given by (46). In that 
case, it is easy to see one has 

!7'h <o (2 '  t) ~ [FL (49) 
F � 9  

since all contours F are big [(49) obviously fails for small contours]. The 
external field contributions to 

( ) P'(7') exp - ~ ,  h + '  with 7' (negative) 
t~Ey 

can be easily estimated by exp( - e/?o Z r � 9  ~ I FI ), since 2" ~ ~//3o/O(1) D. The 
sum over the collections A is controlled in a straightforward way: 

l~ exp(-e/3o IFl)~exp{O[exp(-~/~0)]  12"7'1} 
A F e A  

Using also (49), we infer that 

with 

(50) 

/3; = 2"/3o/O(1) (52) 

The case of P}y;~(7') is somewhat more complicated because of the 
presence of the excluded volumes. However, it is easy to see that every 

= exp(- /3;  17'1) (51) 
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f - b l o c k  of 5a(7 ' \E({y2}))  has to intersect a big r e  A, Fen {Yk} = ~ ,  or a 
FeA, F~ {Yk} r  such that / ~ E ( { y k } ) i s  sufficiently big. Thus, 

17'\E({Y'k})I <O(~  ~)IS--~ I /~E({Yk})t l  (53) 

in this case. The sum over configurations A = {F} in (46) can be easily 
estimated as in (50) by 

exp{ - O [ e x p ( - e f t 0 ) ]  ]5~7'\E({yk})[ } 

The external field contributions in 5~ are absorbed using 
again 

IF[ exp [ -e f lo  I /~E({y ,} ) t ]  
F E J  

The only problem arises from the possible external field contributions from 
fE({y~,.}), which may be absorbed into a significant increase of the 
constant A. If, however, all {yx} are in one (or two) L-blocks, then these 
contributions can be again absorbed as in (42), provided that 

L ' S  ~< qflo/O(1) D (54) 

with O(1) big enough. This is the most stringent restriction on the scales 
f ,  L, L', O(1 ) ~ ~ ~< L ~< L', which we shall encounter. Summarizing, 

p{~2~( 7 ) e x p  - ~ h.- 
I " u ~ '  

<~A 'l{y2}l e x p [ - q f l ;  [?'\E({y~:})l] for 7' ~'positive~ (55) 
(negative)  

uniformly in A with A ' =  {exp O[(L'LP) a D] } A or A ' =  
{exp O[exp(-eflo)]} A if all Yk are in one or two L-blocks. 

There are two crucial effects of the coarse graining. The first is a 
decrease in the effective temperature: 

flo ~ fl• = s (56) 

The other important effect is a change, according to (47), of the infinite- 
volume field 

h �9 __. h + , =  5O~[h + + O(e-~~ (57) 

822/47/5-6-8 
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Note also that in finite volume, 

]h, +' - h-+'l ~< exp[ -~/7~ dist(u, ~?A')] (58) 

if u is not a site adjacent to ~A'. Thus, h = �89 § - h -  ) is a relevant variable, 
which expands under the coarse graining. Its control will proceed by a 
method used by Bleher and Sinai. (~) 

6. THE I N D U C T I V E  PROCEDURE 

Given initial h with ihol <2D,  we shall distinguish three possible 
outcomes of the coarse graining described in the previous section. 

(i) h ' o = R e h ' - � 8 9  Then the expansion of 
Section 3 establishes the existence of the ( + )  phase, 

(ii) -ho~-D. Then, by the same argument, the ( - )  phase exists. 

(iii) Ih;I <2D. This means that 

Ihol < 22'  dD + O(e -"~~ < D 

Since our estimates worked uniformly for Ihol < 2D and all entries were 
analytic in h, we easily infer (using the Cauchy estimate) that for Ihol < D 

dh'/dh = S a +  O(e-~~ (59) 

It follows easily that the inverse function h(h') is uniquely determined for 
Ih;[ <2D,  and consequently all quantities can be expressed as analytic 
functions of h' there. Fix Im h (i.e., Im JIx) in the original spin model). For 
ho running through ( - D ,  D)=-I, h' sweeps an analytic curve J/r which 
forms an angle ~< O(e -~B~ with the real axis. Consider the function 

Clearly 

I~ho i~ , h'o6~l (60) 

dfl/dho = 2 '~ + O(e ~o) (61) 

so that f l  expands and is increasing. Let ~ = i and ~ = f l l ( [ ) c  I c ~ .  To 
the right of/~1 in ~ ,  h; ~> D and we have the ( + ) phase; to the left of ~ ,  we 
have the ( - )  phase. The case of h o E ~ will be decided in the next steps. 

For Ih;I < 2D, we shall apply another coarse-graining step. The choice 
of the scales A ~ L" characterizing this step, O(1 ) ~< f '  ~< L' ~< L", has to 
satisfy 

L"~cP' ~< tt/7~/O(1) D (62) 
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[-see (54)]. For the sake of the present section, we could choose all those 
scales equal. However, (62) allows a superexponential growth in sub- 
sequent scales. For example, s = L3/4 < L < L'  = L s/4 leads to L"L,e' = 
L'Sl4L'314=L'LpL~I2, so that (54) will imply (62). We shall use the 
possibility of choosing rapidly growing scales in the analysis of the decay of 
the correlation functions in the next section. 

The second coarse-graining step differs from the first one only in one 
respect, namely that the external field h + '  in a finite volume A' might 
depend on u everywhere in A'. However, due to (58), the differences 

[Re(h + ' -  h, ')l ~< 2D + 2 exp[--e/7~ dist(u, c3A')] (63) 

are well under control for u not adjacent to 0A'. Since we shall have to 
estimate I R e ( h + ' - h z ' ) l  only in the interiors of contours flipping signs, 
(63) will be sufficient. For the sites not adjacent to the boundary of the 
volume, (58) clearly iterates: 

i h + " _ h + "  I <~ Y~ I ( h + ' - h - + ' ) +  ( S f ' -  S-+')I 
y in the  c~, b lock  
cen t e r ed  a t  ~ ' u  

~< ~ {1 + OEexp(-�89 } exp[ -~/7~ dist(u, 0A')] 
Y 

~< expE -- a//~' dist(u, OA")] (64) 

Again 

because 

dist(y, aA') > ~  dist(u, c3A"), 
U t l )  

dist(u, c3A") ~> 3 

dh' /dh'  = 5~ 'd + O [exp( - eft;)] (65) 

if {h;I < D, and for Ih~l < 2D all quantities are analytic functions of ho. The 
piece of the curve ~/'1 satisfying Ih;I < D is clearly mapped into an analytic 
curve dd2 of h", which forms an angle 

~< O [ e x p ( -  eflo)] + O [exp(-~fl~)] 

with the real axis. Consider the function f2, 

f2 

I~h'o~-> h' t--+ h" ~ - - - > h ~  1 (66) 
fl) fn 
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Clearly, by the chain rule and (65), 

df2 = y , d +  O[exp(- eflo)] + O[exp(--eft;)] 
dh; 

(67) 

Let I ~ = / a n d  II = f 2 1 ( [ ) c l c I  1. To the right (left) o f I  l in Po, Reh~>>.D 
( -Reh ; '>~D)  and the + ( - )  phase exists. In I{ we have to coarse grain 
again. 

Let ~ = f l l ( I { ) ,  ~ / ~ 1 ~ .  Proceeding further, we construct a 
sequence of functions 

such that 

f , :  I ~  N1 (68) 

df'+l - (L~I"))a+ ~ O[exp(-efl(ok))] (69) 
dh~o ~) k = O  

Since 

y, O[exp( -eft(ok))] = O[exp(-~/~o)] 
k=O 

p I all fn expand and are increasing. Defining I~+ 1 =f71(IqP), we obtain a 
sequence of closed, nonempty intervals 

PO=Pl = ~ =  ..- = ~ =  - -  

with rapidly decreasing length. Define (for each Im h) the critical value ho,. 
by 

{ h o ~ . } = ~  
n 

For h o > hoc, at some stage, we shall be able to apply the single-scale, large- 
external-field expansion of Section 3 to the correlation functions with ( + )  
boundary condition and establish existence of the ( + )  phase. Similarly, for 
ho <hoc, the ( - )  phase exists. 

The interesting question is the dependence of ho,. on Im h. The phase 
separation curve hoe(Ira h) can be obtained as the limit when n ~ oo of the 
subsequent inverse images of the line {h(n): h(on)=0} under the mapping 
h ~ h ' ~  --- ~ h ("). It is again easy to see that these curves from an angle 
bounded by Z ~k=o O[exp(-afi(ok))] with the imaginary axis and that they 
converge uniformly with first (and in fact all) derivatives to the curve 
hoc(Im h). We conclude that the phase separation curve is (C ~ -  ) smooth. 
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On this curve, i.e., for h0=h0~, we may continue the coarse graining 
forever, or, in the finite volume, n times, until the volume shrinks to an 
O(L (")) block centered at the origin. Consider the volumes big enough so 
that by that time all x~ ~), j =  1 ..... J, are in the L(~)-block centered at the 
origin. Let 7(0 ~) be the contour composed of the 3L(~)-block centered at zero 
with + sign on 87(o ~). Then 

(~r~j)~= (expI- ~oh+(")]p(In;.)i(y~o"))+B(x,.~)}//(l+B) (70) 

where Blxl,~ resums the contributions of all configurations different from 
the minimal one consisting of 7(0 ") only. Similarly, B resums all the 
contributions of nonempty configurations of contours. Since for all con- 
tours inside the O(L(~/)-block the contour activities dominate the external 
field contributions, we easily see that 

[B(~~ ~< (A("))I(# ")/I O[exp(-eft(o"))] (71) 

with A (''/ uniformly bounded and similarly 

Moreover. 

and 

IB[ ~< O[exp(-efi(o"))] 

1~ + ( n ) ~ ]  ~(n)  [~,(n)] 

- [exp(-17(o~)1 h-+(~))] p(r ~9) t~ 

~< (A ("))ll~ ")~1 exp[ -~fi(o")d(7(o ~), 8A(~))] 

[exp(-[7(on)l h-+(n/)] -(") (o,(,,)~ 

have a limit when n --* ~ ;  the main contribution to 

~(n+ 1) / , (n+ 1)) [ e x p ( -  t7~o "+ ~)1 h+("+ 1))] t" (,:},+,,}wo 

comes from 

[exp(_17(o.)l h_+(n))]_(,o .,(.)~ +111 e(~,~%tro jexp(--Z('(n)dlT(0" S -+I"/) 

Thus, for Re h 0 = Re hoc , 

lim ~r~ = m[exp(-17(#)lh+(n))qr,(.~}wo 
A ~ d  J A 

(72) 

(73) 
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This establishes the existence of the ( + )  and the ( - )  phases in this 
case. By looking at <do)# it is easy to see that ( d o ) +  r <do) , so that 
the phases are different. 

Our iterative approach may be used to analyze various properties of 
the phases constructed above. An example of such an analysis is given in 
what follows. 

7. FINITENESS OF THE CORRELATION LENGTH 

It is easy to establish the exponential decay of the correlation 
functions of our model uniformly in h o around the first-order transition 
point. To this end, notice that we could have extracted an additional factor 

exp { - 2t/fl 0 diam [7\E( { Yk })3 } 

on the right-hand side of (7) [and of (14)], which would be inherited by 
the right-hand side of (11) (with 7 ~ X~). In the large-external-field expan- 
sion of Section 3, we obtain for the connected expectation [-compare (12)] 

1 ~T xj I , I ~  fix; 2 
, J2 corm 

p-+ 
{ X~ } disjoint  c~ 

0 X~= {xjl,xj2 } 
JC~ ~ ({Xjr  xh  } ) e 

s o m e  X~ intersect  bo th  {XJ~ } and  {xj2 } 

x ~ ~ a X ~ , Y  m P• 
n = O  (YI,...,Yn) m = l  

2 

+ X 
{X~l } disjoint  {Xa2} disjoint  i =  1 ~i 
U X ~ l ~ { x j  ~) U X ~ 2 = { x j  2} 

x ~ 2 a ( ,JX~,UX~2,  Y m P+-(Ym) (74) 
n = O  (YI,...,Yn) m = l  

The connectedness structure in (74) allows us to extract the additional 
factor 

exp{ - 2r/fio[d({xjl }, {xs2 } ) -  O(L)] } (75) 

from the standard estimate of (74) uniform in the distance between {x~l} 
and {xj2 } [O(L) is due to the excluded volumes around {xj,, xi2}]. 
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In order to establish the exponential decay of the correlations, we have 
to see how the extra factor exp{-2rl/~0 diam[7\E({y~})]} in (14), which 
immediately generates an extra exp{-2q/?odiam[/~E({yk})]} in (43), 
iterates under the coarse graining. Let A be the family of contours F that 
under blocking gives a new scale contour ~/' [see (46)]. It is easy to see that 

5~ diam[7'\E({xj } c~ 7')] 

~< ~, {diam[/~E({xj} c~F)] + O ( ~ ) }  
F~A 

<~[l+O(5~/L)] ~ diam[1-~E({xj}c~F)] (76) 
F ~ A  

since for every F intersecting ~(7'\E({xj} c~7')) one has 
diam[/~E({xj} c~F)] >~ O(L). Hence, on the right-hand side of (55), we 
obtain an extra factor 

2qL~Tfl ~ diam[7,\E({ y2 })] } exp 1 + O(~/L) (77) 

and after n iterations, an extra factor 

{ 2 q S a ' "  S (n  1)/~ 0 diam[7\E({y~,)})] } 
exp - [1 +O(L~/L)].--  [1 +O(~q (" 1)/L(" 1))] 

(78) 

will appear on the right-hand side of (14). Since 5f(k)/L (~) decreases rapidly 
with our superexponential growth of the scales and 

d({x}~)}, {x}~)})=(5~ (n 1/) ld({Xjl}, {xj2}) (79) 

we obtain a factor 

exp{-tlflo[d({xj~}, {xj2})-O(~...~(" 1)L('))]} 

when estimating 

after n coarse-graining steps by the large-external-field expansion of 
Section 3. Thus, the uniform exponential decay of correlation functions 
follows for ho v a hoc. 
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Establishing the exponential decay for h0 = hoc requires somewhat dif- 
ferent treatment of the correlation functions, without use of the excluded 
volumes (their introduction allowed a simplified treatment of small con- 
tours). We shall not pursue this point here. 
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